Back
Hugging Face
Open-source AI platform providing a hub for hosting, sharing, and deploying ML models, datasets, and applications

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

<ul><li><strong>Pricing Model:</strong> Freemium with usage compute</li><li><strong>Packaging Model:</strong> Freemium | Good / Better / Best (GBB)</li><li><strong>Credit Model:</strong> Monthly credit pools by tier with pay-as-you-go overage</li></ul>
February 2, 2026
Last update:
<h3>Product Overview</h3><p>Hugging Face operates as a comprehensive AI infrastructure platform that combines open-source model hosting with enterprise-grade deployment services. The company evolved from a consumer chatbot startup to become the leading hub for machine learning models and datasets, serving both individual developers and large enterprises. The platform offers three core products: Inference Providers (unified multi-provider AI access), AutoTrain (no-code model training), and Inference Endpoints (managed model deployment). The value proposition centers on vendor independence, transparent pricing with no markup fees, and broad accessibility from individual developers to enterprise teams.</p>
<h3>Pricing Snapshot</h3><div class="tableResponsive"><table cellpadding="6" cellspacing="0"><tr><th>Tier</th><th>Price</th><th>Included Credits</th><th>Key Features</th><th>Enterprise Features</th></tr><tr><td>Free</td><td>$0</td><td>$0.10/month</td><td>Basic platform access, model hosting</td><td>N/A</td></tr><tr><td>PRO</td><td>$9/month</td><td>$2.00/month</td><td>Individual developer features, enhanced inference</td><td>N/A</td></tr><tr><td>Team</td><td>$20/user/month</td><td>$2.00/seat/month</td><td>Collaboration, SSO/SAML</td><td>Audit logs, centralized control</td></tr><tr><td>Enterprise</td><td>$50+/user/month</td><td>$2.00/seat/month</td><td>Custom agreements</td><td>Legal compliance, dedicated support</td></tr></table></div>
<h3>Key Features & Capabilities</h3><p>Hugging Face provides comprehensive AI infrastructure spanning model hosting, training, deployment, and enterprise governance with transparent pricing and vendor independence.</p><ul><li>Platform Access &amp; Collaboration: Model and dataset hosting with version control, collaborative development with team workspaces, SOC 2 compliance and enterprise security controls, and SSO/SAML integration for organizational access.</li><li>AI Inference Services: Unified API access to 100+ models from multiple providers with OpenAI API compatibility for seamless migration, automatic routing to fastest or cheapest providers, and zero markup fees on third-party provider costs.</li><li>Model Training &amp; Deployment: AutoTrain no-code model fine-tuning platform, Inference Endpoints with dedicated autoscaling infrastructure, local and cloud deployment flexibility, and support for custom models and private datasets.</li><li>Enterprise Features: Centralized billing with spending controls, resource groups for organizational governance, comprehensive audit logs and compliance reporting, and regional deployment options for data residency.</li></ul>
<h3>Pricing Model Analysis</h3><p>Hugging Face uses a hybrid pricing model that separates platform access from compute consumption:</p><div class="tableResponsive"><table cellpadding="6" cellspacing="0"><tr><th>Metric Type</th><th>What Measured</th><th>Why It Matters</th></tr><tr><td>Value Metric</td><td>Platform access + collaboration features</td><td>Aligns with team size and organizational adoption</td></tr><tr><td>Usage Metric</td><td>Compute time (seconds/minutes) for inference and training</td><td>Scales with actual AI workload consumption</td></tr><tr><td>Billable Metric</td><td>Hardware-specific rates + monthly credit offsets</td><td>Provides cost predictability with usage flexibility</td></tr></table></div>
<h3>Pricing Evolution Timeline</h3><div class="tableResponsive"><table cellpadding="6" cellspacing="0"><tr><th>Date</th><th>Milestone</th><th>Source</th></tr><tr><td>September 2020</td><td>Launched first subscription tiers: PRO ($9/month), Team ($20/user/month), Enterprise ($50+/user/month)</td><td><a href='https://huggingface.co/pricing' target='_blank'>Hugging Face Pricing <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16" fill="none"> <path d="M14 6.5C14 6.63261 13.9473 6.75979 13.8536 6.85355C13.7598 6.94732 13.6326 7 13.5 7C13.3674 7 13.2402 6.94732 13.1464 6.85355C13.0527 6.75979 13 6.63261 13 6.5V3.7075L8.85437 7.85375C8.76055 7.94757 8.63331 8.00028 8.50062 8.00028C8.36794 8.00028 8.2407 7.94757 8.14688 7.85375C8.05305 7.75993 8.00035 7.63268 8.00035 7.5C8.00035 7.36732 8.05305 7.24007 8.14688 7.14625L12.2925 3H9.5C9.36739 3 9.24021 2.94732 9.14645 2.85355C9.05268 2.75979 9 2.63261 9 2.5C9 2.36739 9.05268 2.24021 9.14645 2.14645C9.24021 2.05268 9.36739 2 9.5 2H13.5C13.6326 2 13.7598 2.05268 13.8536 2.14645C13.9473 2.24021 14 2.36739 14 2.5V6.5ZM11.5 8C11.3674 8 11.2402 8.05268 11.1464 8.14645C11.0527 8.24021 11 8.36739 11 8.5V13H3V5H7.5C7.63261 5 7.75979 4.94732 7.85355 4.85355C7.94732 4.75979 8 4.63261 8 4.5C8 4.36739 7.94732 4.24021 7.85355 4.14645C7.75979 4.05268 7.63261 4 7.5 4H3C2.73478 4 2.48043 4.10536 2.29289 4.29289C2.10536 4.48043 2 4.73478 2 5V13C2 13.2652 2.10536 13.5196 2.29289 13.7071C2.48043 13.8946 2.73478 14 3 14H11C11.2652 14 11.5196 13.8946 11.7071 13.7071C11.8946 13.5196 12 13.2652 12 13V8.5C12 8.36739 11.9473 8.24021 11.8536 8.14645C11.7598 8.05268 11.6326 8 11.5 8Z" fill="#95988B"/> </svg></a></td></tr><tr><td>2020-2022</td><td>Introduced Inference API with usage-based credits ($0.10-$2.00/month by tier)</td><td><a href='https://huggingface.co/docs/inference-providers/en/pricing' target='_blank'>Inference Providers Pricing <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16" fill="none"> <path d="M14 6.5C14 6.63261 13.9473 6.75979 13.8536 6.85355C13.7598 6.94732 13.6326 7 13.5 7C13.3674 7 13.2402 6.94732 13.1464 6.85355C13.0527 6.75979 13 6.63261 13 6.5V3.7075L8.85437 7.85375C8.76055 7.94757 8.63331 8.00028 8.50062 8.00028C8.36794 8.00028 8.2407 7.94757 8.14688 7.85375C8.05305 7.75993 8.00035 7.63268 8.00035 7.5C8.00035 7.36732 8.05305 7.24007 8.14688 7.14625L12.2925 3H9.5C9.36739 3 9.24021 2.94732 9.14645 2.85355C9.05268 2.75979 9 2.63261 9 2.5C9 2.36739 9.05268 2.24021 9.14645 2.14645C9.24021 2.05268 9.36739 2 9.5 2H13.5C13.6326 2 13.7598 2.05268 13.8536 2.14645C13.9473 2.24021 14 2.36739 14 2.5V6.5ZM11.5 8C11.3674 8 11.2402 8.05268 11.1464 8.14645C11.0527 8.24021 11 8.36739 11 8.5V13H3V5H7.5C7.63261 5 7.75979 4.94732 7.85355 4.85355C7.94732 4.75979 8 4.63261 8 4.5C8 4.36739 7.94732 4.24021 7.85355 4.14645C7.75979 4.05268 7.63261 4 7.5 4H3C2.73478 4 2.48043 4.10536 2.29289 4.29289C2.10536 4.48043 2 4.73478 2 5V13C2 13.2652 2.10536 13.5196 2.29289 13.7071C2.48043 13.8946 2.73478 14 3 14H11C11.2652 14 11.5196 13.8946 11.7071 13.7071C11.8946 13.5196 12 13.2652 12 13V8.5C12 8.36739 11.9473 8.24021 11.8536 8.14645C11.7598 8.05268 11.6326 8 11.5 8Z" fill="#95988B"/> </svg></a></td></tr><tr><td>September 28, 2022</td><td>AutoTrain launch with consumption-based training pricing</td><td><a href='https://huggingface.co/blog/autotrain' target='_blank'>AutoTrain Blog <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16" fill="none"> <path d="M14 6.5C14 6.63261 13.9473 6.75979 13.8536 6.85355C13.7598 6.94732 13.6326 7 13.5 7C13.3674 7 13.2402 6.94732 13.1464 6.85355C13.0527 6.75979 13 6.63261 13 6.5V3.7075L8.85437 7.85375C8.76055 7.94757 8.63331 8.00028 8.50062 8.00028C8.36794 8.00028 8.2407 7.94757 8.14688 7.85375C8.05305 7.75993 8.00035 7.63268 8.00035 7.5C8.00035 7.36732 8.05305 7.24007 8.14688 7.14625L12.2925 3H9.5C9.36739 3 9.24021 2.94732 9.14645 2.85355C9.05268 2.75979 9 2.63261 9 2.5C9 2.36739 9.05268 2.24021 9.14645 2.14645C9.24021 2.05268 9.36739 2 9.5 2H13.5C13.6326 2 13.7598 2.05268 13.8536 2.14645C13.9473 2.24021 14 2.36739 14 2.5V6.5ZM11.5 8C11.3674 8 11.2402 8.05268 11.1464 8.14645C11.0527 8.24021 11 8.36739 11 8.5V13H3V5H7.5C7.63261 5 7.75979 4.94732 7.85355 4.85355C7.94732 4.75979 8 4.63261 8 4.5C8 4.36739 7.94732 4.24021 7.85355 4.14645C7.75979 4.05268 7.63261 4 7.5 4H3C2.73478 4 2.48043 4.10536 2.29289 4.29289C2.10536 4.48043 2 4.73478 2 5V13C2 13.2652 2.10536 13.5196 2.29289 13.7071C2.48043 13.8946 2.73478 14 3 14H11C11.2652 14 11.5196 13.8946 11.7071 13.7071C11.8946 13.5196 12 13.2652 12 13V8.5C12 8.36739 11.9473 8.24021 11.8536 8.14645C11.7598 8.05268 11.6326 8 11.5 8Z" fill="#95988B"/> </svg></a></td></tr><tr><td>November 8, 2022</td><td>Major pricing restructure: deprecated paid Inference API, launched Inference Endpoints with hourly billing</td><td><a href='https://huggingface.co/blog' target='_blank'>Pricing Update Blog <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16" fill="none"> <path d="M14 6.5C14 6.63261 13.9473 6.75979 13.8536 6.85355C13.7598 6.94732 13.6326 7 13.5 7C13.3674 7 13.2402 6.94732 13.1464 6.85355C13.0527 6.75979 13 6.63261 13 6.5V3.7075L8.85437 7.85375C8.76055 7.94757 8.63331 8.00028 8.50062 8.00028C8.36794 8.00028 8.2407 7.94757 8.14688 7.85375C8.05305 7.75993 8.00035 7.63268 8.00035 7.5C8.00035 7.36732 8.05305 7.24007 8.14688 7.14625L12.2925 3H9.5C9.36739 3 9.24021 2.94732 9.14645 2.85355C9.05268 2.75979 9 2.63261 9 2.5C9 2.36739 9.05268 2.24021 9.14645 2.14645C9.24021 2.05268 9.36739 2 9.5 2H13.5C13.6326 2 13.7598 2.05268 13.8536 2.14645C13.9473 2.24021 14 2.36739 14 2.5V6.5ZM11.5 8C11.3674 8 11.2402 8.05268 11.1464 8.14645C11.0527 8.24021 11 8.36739 11 8.5V13H3V5H7.5C7.63261 5 7.75979 4.94732 7.85355 4.85355C7.94732 4.75979 8 4.63261 8 4.5C8 4.36739 7.94732 4.24021 7.85355 4.14645C7.75979 4.05268 7.63261 4 7.5 4H3C2.73478 4 2.48043 4.10536 2.29289 4.29289C2.10536 4.48043 2 4.73478 2 5V13C2 13.2652 2.10536 13.5196 2.29289 13.7071C2.48043 13.8946 2.73478 14 3 14H11C11.2652 14 11.5196 13.8946 11.7071 13.7071C11.8946 13.5196 12 13.2652 12 13V8.5C12 8.36739 11.9473 8.24021 11.8536 8.14645C11.7598 8.05268 11.6326 8 11.5 8Z" fill="#95988B"/> </svg></a></td></tr><tr><td>September 16, 2024</td><td>Introduced unified credit system for Inference Providers</td><td><a href='https://huggingface.co/docs/inference-providers/en/pricing' target='_blank'>Inference Providers Pricing <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16" fill="none"> <path d="M14 6.5C14 6.63261 13.9473 6.75979 13.8536 6.85355C13.7598 6.94732 13.6326 7 13.5 7C13.3674 7 13.2402 6.94732 13.1464 6.85355C13.0527 6.75979 13 6.63261 13 6.5V3.7075L8.85437 7.85375C8.76055 7.94757 8.63331 8.00028 8.50062 8.00028C8.36794 8.00028 8.2407 7.94757 8.14688 7.85375C8.05305 7.75993 8.00035 7.63268 8.00035 7.5C8.00035 7.36732 8.05305 7.24007 8.14688 7.14625L12.2925 3H9.5C9.36739 3 9.24021 2.94732 9.14645 2.85355C9.05268 2.75979 9 2.63261 9 2.5C9 2.36739 9.05268 2.24021 9.14645 2.14645C9.24021 2.05268 9.36739 2 9.5 2H13.5C13.6326 2 13.7598 2.05268 13.8536 2.14645C13.9473 2.24021 14 2.36739 14 2.5V6.5ZM11.5 8C11.3674 8 11.2402 8.05268 11.1464 8.14645C11.0527 8.24021 11 8.36739 11 8.5V13H3V5H7.5C7.63261 5 7.75979 4.94732 7.85355 4.85355C7.94732 4.75979 8 4.63261 8 4.5C8 4.36739 7.94732 4.24021 7.85355 4.14645C7.75979 4.05268 7.63261 4 7.5 4H3C2.73478 4 2.48043 4.10536 2.29289 4.29289C2.10536 4.48043 2 4.73478 2 5V13C2 13.2652 2.10536 13.5196 2.29289 13.7071C2.48043 13.8946 2.73478 14 3 14H11C11.2652 14 11.5196 13.8946 11.7071 13.7071C11.8946 13.5196 12 13.2652 12 13V8.5C12 8.36739 11.9473 8.24021 11.8536 8.14645C11.7598 8.05268 11.6326 8 11.5 8Z" fill="#95988B"/> </svg></a></td></tr><tr><td>January 2025</td><td>Enhanced free tier with $0.10/month inference credits</td><td><a href='https://huggingface.co/docs' target='_blank'>Hugging Face PRO Documentation <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16" fill="none"> <path d="M14 6.5C14 6.63261 13.9473 6.75979 13.8536 6.85355C13.7598 6.94732 13.6326 7 13.5 7C13.3674 7 13.2402 6.94732 13.1464 6.85355C13.0527 6.75979 13 6.63261 13 6.5V3.7075L8.85437 7.85375C8.76055 7.94757 8.63331 8.00028 8.50062 8.00028C8.36794 8.00028 8.2407 7.94757 8.14688 7.85375C8.05305 7.75993 8.00035 7.63268 8.00035 7.5C8.00035 7.36732 8.05305 7.24007 8.14688 7.14625L12.2925 3H9.5C9.36739 3 9.24021 2.94732 9.14645 2.85355C9.05268 2.75979 9 2.63261 9 2.5C9 2.36739 9.05268 2.24021 9.14645 2.14645C9.24021 2.05268 9.36739 2 9.5 2H13.5C13.6326 2 13.7598 2.05268 13.8536 2.14645C13.9473 2.24021 14 2.36739 14 2.5V6.5ZM11.5 8C11.3674 8 11.2402 8.05268 11.1464 8.14645C11.0527 8.24021 11 8.36739 11 8.5V13H3V5H7.5C7.63261 5 7.75979 4.94732 7.85355 4.85355C7.94732 4.75979 8 4.63261 8 4.5C8 4.36739 7.94732 4.24021 7.85355 4.14645C7.75979 4.05268 7.63261 4 7.5 4H3C2.73478 4 2.48043 4.10536 2.29289 4.29289C2.10536 4.48043 2 4.73478 2 5V13C2 13.2652 2.10536 13.5196 2.29289 13.7071C2.48043 13.8946 2.73478 14 3 14H11C11.2652 14 11.5196 13.8946 11.7071 13.7071C11.8946 13.5196 12 13.2652 12 13V8.5C12 8.36739 11.9473 8.24021 11.8536 8.14645C11.7598 8.05268 11.6326 8 11.5 8Z" fill="#95988B"/> </svg></a></td></tr></table></div>
<h3>Customer Sentiment Highlights</h3><ul><li>“Hugging Face is cost and time saving. Pay is less, you pay what you use, doesn&#039;t affect much. Overall positive impact on business.”<b> <span class="pricingHiphenSymb"> - </span>Verified Business Customer, TrustRadius</b></li><li>“Huggingface Pro account for $9. You can use unlimited Llama 3 70B via API. I send thousands of requests for some of my projects and it works very well.”<b> <span class="pricingHiphenSymb"> - </span>Reddit User, r/LocalLLaMA</b></li><li>“So if I get this right, even without paying, I can access [the models listed as &#039;warm&#039;] including Flux dev and some small to medium sized LLMs to the tune of 300 requests per hour? That sounds pretty generous.”<b> <span class="pricingHiphenSymb"> - </span>Reddit User, r/LocalLLaMA</b></li><li>“1 API key. 100+ models. 0% markup fees. Fully open source. Anything else feels like a scam now.”<b> <span class="pricingHiphenSymb"> - </span>@helicone_ai, Twitter/X</b></li><li>“There are 50K open models which has inference available in @huggingface. This means you can try in the browser without installing anything. It uses up credits but they give $0.10 for free users, $2/mo. for Pro. Good enough for trying out models before investing in it.”<b> <span class="pricingHiphenSymb"> - </span>@donvito, Twitter/X</b></li></ul>
Metronome’s Take
<p>Hugging Face offers a mix of usage-based billing for inference and training compute, plus subscription tiers that provide platform access and usage credits. Rather than a single unified API pricing scheme, their pricing varies by product: AutoTrain (model training) is billed based on underlying compute resources. Inference Providers (model inference) uses centralized, pay-as-you-go pricing with monthly credits and optional provider keys. Platform subscriptions (e.g., Hugging Face PRO) enhance usage limits and credit quotas. Hugging Face does not have a single per-token pricing table like some LLM vendors; instead, pricing is tied to compute time, provider rates, and usage quotas.</p>
<p><strong>Recommendation:</strong> This infrastructure-style, usage-based hybrid model is commonly adopted by developer platforms and AI infrastructure providers that serve teams with variable workloads and multi-provider needs. Companies such as Databricks, Snowflake, Vercel, and GitHub use comparable approaches, combining baseline access fees with consumption-based pricing that scales with usage. This model is well suited to organizations that evaluate or operate across multiple AI providers and prefer to avoid long-term commitments to a single vendor. It can also align with teams whose usage fluctuates based on project cycles rather than remaining constant month to month. While the inclusion of credits and usage-based billing requires more active cost monitoring, this structure can offer flexibility for engineering teams working with open-source models or variable workloads when compared with fixed-commitment pricing commonly associated with large cloud providers.</p>
<h4>Key Insights</h4><ul><li> <strong>Credit Buffer System:</strong> Monthly credit allocations provide a small buffer for experimentation, while usage-based billing scales with underlying compute consumption. Free users receive a modest monthly credit, and paid tiers include higher recurring credits that offset pay-as-you-go charges. <p><strong>Benefit:</strong> Developers can test models and inference endpoints with minimal upfront cost, then transition naturally to usage-based billing for production workloads without plan migrations or sales involvement.</p></li><li> <strong>Zero-Markup Multi-Provider Access:</strong> A unified API enables access to a broad catalog of models across multiple providers, with pricing passed through at underlying provider rates rather than marked up by the platform. <p><strong>Benefit:</strong> Organizations centralize billing and usage tracking across providers while preserving cost transparency and avoiding deeper dependency on any single proprietary API.</p></li><li> <strong>Hardware-Specific Compute Pricing:</strong> Inference and training workloads are billed based on the compute resources used, with granular pricing that ranges from low-cost CPU instances to premium GPU configurations, depending on the provider and workload type. Billing granularity varies by service (e.g., per-second for inference, per-minute or per-hour for training). <p><strong>Benefit:</strong> Teams can align infrastructure choice to workload needs—using lower-cost resources for development and scaling to higher-performance hardware for production—without long-term commitments or reserved capacity.</p></li><li> <strong>Tiered Feature Access with Consumption Independence:</strong> Platform features (SSO, audit logs, resource groups) unlock at higher subscription tiers, but compute consumption pricing remains consistent across all tiers. <p><strong>Benefit:</strong> Teams upgrade for collaboration and governance features without facing usage-based price increases, allowing enterprises to add security controls without renegotiating infrastructure costs.</p></li></ul>

The Pricing
Experimentation
Playbook

Find your ideal pricing model

Answer 8 quick questions to discover which best fits how your customers get value from your product.

Find your model