Back
Crusoe Cloud
Specialized GPU cloud computing provider operating entirely on renewable energy sources with focus on AI/ML infrastructure.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

<ul><li><strong>Pricing Model:</strong> Usage-based with spot pricing discounts</li><li><strong>Packaging Model:</strong> Three-tier compute pricing with optional managed services, per-minute compute billing with monthly storage charges</li><li><strong>Credit Model:</strong> N/A</li></ul>
January 19, 2026
Last update:
<h3>Product Overview</h3><p>Crusoe Cloud is a specialized GPU cloud computing provider that operates entirely on renewable energy sources, offering AI/ML infrastructure with a focus on cost efficiency and environmental sustainability. The company differentiates itself through an &quot;energy-first&quot; approach, building data centers at sites with abundant renewable or stranded energy to deliver competitive pricing while maintaining a 100% clean energy footprint. Crusoe positions itself as a neocloud provider specifically optimized for energy-intensive AI workloads, offering both raw compute infrastructure and managed inference services.</p>
<h3>Pricing Snapshot</h3><div class="tableResponsive"><table cellpadding="6" cellspacing="0"><tr><th>Gpu Model</th><th>On Demand Price</th><th>Spot Price</th><th>Memory</th><th>Status</th></tr><tr><td>H200 (HGX)</td><td>$4.29/hour</td><td>N/A</td><td>141GB HBM3e</td><td>Available</td></tr><tr><td>H100 (HGX)</td><td>$3.90/hour</td><td>$1.60/hour</td><td>80GB HBM2e</td><td>Available</td></tr><tr><td>AMD MI300X</td><td>$3.45/hour</td><td>$0.95/hour</td><td>192GB HBM3</td><td>Available</td></tr><tr><td>A100 (80GB SXM)</td><td>$1.95/hour</td><td>$1.30/hour</td><td>80GB HBM2e</td><td>Available</td></tr><tr><td>A100 (80GB PCIe)</td><td>$1.65/hour</td><td>$1.20/hour</td><td>80GB HBM2e</td><td>Available</td></tr><tr><td>A100 (40GB PCIe)</td><td>$1.45/hour</td><td>$1.00/hour</td><td>40GB HBM2e</td><td>Available</td></tr><tr><td>L40S</td><td>$1.00/hour</td><td>$0.50/hour</td><td>48GB GDDR6</td><td>Available</td></tr><tr><td>A40</td><td>$0.90/hour</td><td>$0.40/hour</td><td>48GB GDDR6</td><td>Available</td></tr></table></div>
<h3>Key Features & Capabilities</h3><p>Crusoe Cloud provides comprehensive AI/ML infrastructure spanning compute, managed services, storage, and enterprise capabilities, all powered by 100% renewable energy.</p><ul><li>Compute Infrastructure: NVIDIA GPUs (GB200 NVL72, HGX B200, H200, H100, A100, L40S), AMD GPUs (MI355X, MI300X with up to 288GB HBM3E memory), CPU instances starting at $0.04/vCPU-hour for general-purpose and $0.09/vCPU-hour for storage-optimized, plus InfiniBand networking with 1,600-3,200 Gbps for distributed training workloads.</li><li>Managed Services: Managed Inference with MemoryAlloy technology delivering 9.9x faster time-to-first-token, Managed Kubernetes at $0.10/cluster-hour, AutoClusters with fault-tolerant orchestration, and support for open source and specialized AI models.</li><li>Storage &amp; Networking: Persistent disks at $0.08/GiB/month (1 GiB to 10 TiB capacity), shared disks at $0.07/GiB/month (1 TiB to 1,000 TiB capacity), zero network egress charges, and VPC networking with 17.5-175 Gbps bandwidth.</li><li>Enterprise Features: 99.98% uptime guarantee, 24/7 enterprise support, RESTful APIs, CLI, and Terraform support, plus real-time performance monitoring.</li></ul>
<h3>Pricing Model Analysis</h3><p>Crusoe Cloud employs a transparent usage-based pricing model with multiple dimensions designed to optimize costs across different AI/ML workload types.</p><div class="tableResponsive"><table cellpadding="6" cellspacing="0"><tr><th>Metric Type</th><th>What Measured</th><th>Why It Matters</th></tr><tr><td>Value Metric</td><td>GPU compute hours with performance optimization</td><td>Directly correlates with AI/ML workload requirements and model training costs</td></tr><tr><td>Usage Metric</td><td>Per-minute billing for compute resources</td><td>Enables granular cost control and scales with actual usage patterns</td></tr><tr><td>Billable Metric</td><td>GPU-hour, vCPU-hour, GiB-month, tokens processed</td><td>Multiple dimensions allow pricing optimization across different workload types</td></tr></table></div>
<h3>Pricing Evolution Timeline</h3><div class="tableResponsive"><table cellpadding="6" cellspacing="0"><tr><th>Date</th><th>Milestone</th><th>Source</th></tr><tr><td>Mid-2022</td><td>Initial platform launch with A100 GPUs</td><td><a href='https://www.crusoe.ai/resources/blog/the-crusoe-cloud-origin-story-a-new-cloud-for-a-new-era' target='_blank'>Crusoe Origin Story <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16" fill="none"> <path d="M14 6.5C14 6.63261 13.9473 6.75979 13.8536 6.85355C13.7598 6.94732 13.6326 7 13.5 7C13.3674 7 13.2402 6.94732 13.1464 6.85355C13.0527 6.75979 13 6.63261 13 6.5V3.7075L8.85437 7.85375C8.76055 7.94757 8.63331 8.00028 8.50062 8.00028C8.36794 8.00028 8.2407 7.94757 8.14688 7.85375C8.05305 7.75993 8.00035 7.63268 8.00035 7.5C8.00035 7.36732 8.05305 7.24007 8.14688 7.14625L12.2925 3H9.5C9.36739 3 9.24021 2.94732 9.14645 2.85355C9.05268 2.75979 9 2.63261 9 2.5C9 2.36739 9.05268 2.24021 9.14645 2.14645C9.24021 2.05268 9.36739 2 9.5 2H13.5C13.6326 2 13.7598 2.05268 13.8536 2.14645C13.9473 2.24021 14 2.36739 14 2.5V6.5ZM11.5 8C11.3674 8 11.2402 8.05268 11.1464 8.14645C11.0527 8.24021 11 8.36739 11 8.5V13H3V5H7.5C7.63261 5 7.75979 4.94732 7.85355 4.85355C7.94732 4.75979 8 4.63261 8 4.5C8 4.36739 7.94732 4.24021 7.85355 4.14645C7.75979 4.05268 7.63261 4 7.5 4H3C2.73478 4 2.48043 4.10536 2.29289 4.29289C2.10536 4.48043 2 4.73478 2 5V13C2 13.2652 2.10536 13.5196 2.29289 13.7071C2.48043 13.8946 2.73478 14 3 14H11C11.2652 14 11.5196 13.8946 11.7071 13.7071C11.8946 13.5196 12 13.2652 12 13V8.5C12 8.36739 11.9473 8.24021 11.8536 8.14645C11.7598 8.05268 11.6326 8 11.5 8Z" fill="#95988B"/> </svg></a></td></tr><tr><td>October 23, 2023</td><td>H100 and L40S GPU launch, premium tier introduction</td><td><a href='https://www.crusoe.ai/resources/newsroom/crusoe-announces-significant-expansion-of-cloud-business-with-new-capacity' target='_blank'>H100/L40S Launch <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16" fill="none"> <path d="M14 6.5C14 6.63261 13.9473 6.75979 13.8536 6.85355C13.7598 6.94732 13.6326 7 13.5 7C13.3674 7 13.2402 6.94732 13.1464 6.85355C13.0527 6.75979 13 6.63261 13 6.5V3.7075L8.85437 7.85375C8.76055 7.94757 8.63331 8.00028 8.50062 8.00028C8.36794 8.00028 8.2407 7.94757 8.14688 7.85375C8.05305 7.75993 8.00035 7.63268 8.00035 7.5C8.00035 7.36732 8.05305 7.24007 8.14688 7.14625L12.2925 3H9.5C9.36739 3 9.24021 2.94732 9.14645 2.85355C9.05268 2.75979 9 2.63261 9 2.5C9 2.36739 9.05268 2.24021 9.14645 2.14645C9.24021 2.05268 9.36739 2 9.5 2H13.5C13.6326 2 13.7598 2.05268 13.8536 2.14645C13.9473 2.24021 14 2.36739 14 2.5V6.5ZM11.5 8C11.3674 8 11.2402 8.05268 11.1464 8.14645C11.0527 8.24021 11 8.36739 11 8.5V13H3V5H7.5C7.63261 5 7.75979 4.94732 7.85355 4.85355C7.94732 4.75979 8 4.63261 8 4.5C8 4.36739 7.94732 4.24021 7.85355 4.14645C7.75979 4.05268 7.63261 4 7.5 4H3C2.73478 4 2.48043 4.10536 2.29289 4.29289C2.10536 4.48043 2 4.73478 2 5V13C2 13.2652 2.10536 13.5196 2.29289 13.7071C2.48043 13.8946 2.73478 14 3 14H11C11.2652 14 11.5196 13.8946 11.7071 13.7071C11.8946 13.5196 12 13.2652 12 13V8.5C12 8.36739 11.9473 8.24021 11.8536 8.14645C11.7598 8.05268 11.6326 8 11.5 8Z" fill="#95988B"/> </svg></a></td></tr><tr><td>September 26, 2024</td><td>Storage product launch with VAST Data partnership</td><td><a href='https://www.crusoe.ai/resources/newsroom/crusoe-vast-data-to-deliver-high-performance-data' target='_blank'>Storage Launch <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16" fill="none"> <path d="M14 6.5C14 6.63261 13.9473 6.75979 13.8536 6.85355C13.7598 6.94732 13.6326 7 13.5 7C13.3674 7 13.2402 6.94732 13.1464 6.85355C13.0527 6.75979 13 6.63261 13 6.5V3.7075L8.85437 7.85375C8.76055 7.94757 8.63331 8.00028 8.50062 8.00028C8.36794 8.00028 8.2407 7.94757 8.14688 7.85375C8.05305 7.75993 8.00035 7.63268 8.00035 7.5C8.00035 7.36732 8.05305 7.24007 8.14688 7.14625L12.2925 3H9.5C9.36739 3 9.24021 2.94732 9.14645 2.85355C9.05268 2.75979 9 2.63261 9 2.5C9 2.36739 9.05268 2.24021 9.14645 2.14645C9.24021 2.05268 9.36739 2 9.5 2H13.5C13.6326 2 13.7598 2.05268 13.8536 2.14645C13.9473 2.24021 14 2.36739 14 2.5V6.5ZM11.5 8C11.3674 8 11.2402 8.05268 11.1464 8.14645C11.0527 8.24021 11 8.36739 11 8.5V13H3V5H7.5C7.63261 5 7.75979 4.94732 7.85355 4.85355C7.94732 4.75979 8 4.63261 8 4.5C8 4.36739 7.94732 4.24021 7.85355 4.14645C7.75979 4.05268 7.63261 4 7.5 4H3C2.73478 4 2.48043 4.10536 2.29289 4.29289C2.10536 4.48043 2 4.73478 2 5V13C2 13.2652 2.10536 13.5196 2.29289 13.7071C2.48043 13.8946 2.73478 14 3 14H11C11.2652 14 11.5196 13.8946 11.7071 13.7071C11.8946 13.5196 12 13.2652 12 13V8.5C12 8.36739 11.9473 8.24021 11.8536 8.14645C11.7598 8.05268 11.6326 8 11.5 8Z" fill="#95988B"/> </svg></a></td></tr><tr><td>December 12, 2024</td><td>General availability and H200 announcement</td><td><a href='https://www.crusoe.ai/resources/blog/crusoe-empowering-the-ai-revolution' target='_blank'>General Availability <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16" fill="none"> <path d="M14 6.5C14 6.63261 13.9473 6.75979 13.8536 6.85355C13.7598 6.94732 13.6326 7 13.5 7C13.3674 7 13.2402 6.94732 13.1464 6.85355C13.0527 6.75979 13 6.63261 13 6.5V3.7075L8.85437 7.85375C8.76055 7.94757 8.63331 8.00028 8.50062 8.00028C8.36794 8.00028 8.2407 7.94757 8.14688 7.85375C8.05305 7.75993 8.00035 7.63268 8.00035 7.5C8.00035 7.36732 8.05305 7.24007 8.14688 7.14625L12.2925 3H9.5C9.36739 3 9.24021 2.94732 9.14645 2.85355C9.05268 2.75979 9 2.63261 9 2.5C9 2.36739 9.05268 2.24021 9.14645 2.14645C9.24021 2.05268 9.36739 2 9.5 2H13.5C13.6326 2 13.7598 2.05268 13.8536 2.14645C13.9473 2.24021 14 2.36739 14 2.5V6.5ZM11.5 8C11.3674 8 11.2402 8.05268 11.1464 8.14645C11.0527 8.24021 11 8.36739 11 8.5V13H3V5H7.5C7.63261 5 7.75979 4.94732 7.85355 4.85355C7.94732 4.75979 8 4.63261 8 4.5C8 4.36739 7.94732 4.24021 7.85355 4.14645C7.75979 4.05268 7.63261 4 7.5 4H3C2.73478 4 2.48043 4.10536 2.29289 4.29289C2.10536 4.48043 2 4.73478 2 5V13C2 13.2652 2.10536 13.5196 2.29289 13.7071C2.48043 13.8946 2.73478 14 3 14H11C11.2652 14 11.5196 13.8946 11.7071 13.7071C11.8946 13.5196 12 13.2652 12 13V8.5C12 8.36739 11.9473 8.24021 11.8536 8.14645C11.7598 8.05268 11.6326 8 11.5 8Z" fill="#95988B"/> </svg></a></td></tr><tr><td>March 19, 2025</td><td>Spot pricing launch with up to 90% discounts</td><td><a href='https://www.crusoe.ai/resources/blog/crusoe-cloud-now-offers-spot-pricing-access-powerful-gpus-on-crusoe-cloud-up-to-90-off' target='_blank'>Spot Pricing Launch <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16" fill="none"> <path d="M14 6.5C14 6.63261 13.9473 6.75979 13.8536 6.85355C13.7598 6.94732 13.6326 7 13.5 7C13.3674 7 13.2402 6.94732 13.1464 6.85355C13.0527 6.75979 13 6.63261 13 6.5V3.7075L8.85437 7.85375C8.76055 7.94757 8.63331 8.00028 8.50062 8.00028C8.36794 8.00028 8.2407 7.94757 8.14688 7.85375C8.05305 7.75993 8.00035 7.63268 8.00035 7.5C8.00035 7.36732 8.05305 7.24007 8.14688 7.14625L12.2925 3H9.5C9.36739 3 9.24021 2.94732 9.14645 2.85355C9.05268 2.75979 9 2.63261 9 2.5C9 2.36739 9.05268 2.24021 9.14645 2.14645C9.24021 2.05268 9.36739 2 9.5 2H13.5C13.6326 2 13.7598 2.05268 13.8536 2.14645C13.9473 2.24021 14 2.36739 14 2.5V6.5ZM11.5 8C11.3674 8 11.2402 8.05268 11.1464 8.14645C11.0527 8.24021 11 8.36739 11 8.5V13H3V5H7.5C7.63261 5 7.75979 4.94732 7.85355 4.85355C7.94732 4.75979 8 4.63261 8 4.5C8 4.36739 7.94732 4.24021 7.85355 4.14645C7.75979 4.05268 7.63261 4 7.5 4H3C2.73478 4 2.48043 4.10536 2.29289 4.29289C2.10536 4.48043 2 4.73478 2 5V13C2 13.2652 2.10536 13.5196 2.29289 13.7071C2.48043 13.8946 2.73478 14 3 14H11C11.2652 14 11.5196 13.8946 11.7071 13.7071C11.8946 13.5196 12 13.2652 12 13V8.5C12 8.36739 11.9473 8.24021 11.8536 8.14645C11.7598 8.05268 11.6326 8 11.5 8Z" fill="#95988B"/> </svg></a></td></tr><tr><td>November 20, 2025</td><td>Managed Inference service with token-based pricing</td><td><a href='https://www.crusoe.ai/resources/newsroom/crusoe-launches-managed-inference-delivering-breakthrough-speed-for-production-ai' target='_blank'>Managed Inference Launch <svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16" fill="none"> <path d="M14 6.5C14 6.63261 13.9473 6.75979 13.8536 6.85355C13.7598 6.94732 13.6326 7 13.5 7C13.3674 7 13.2402 6.94732 13.1464 6.85355C13.0527 6.75979 13 6.63261 13 6.5V3.7075L8.85437 7.85375C8.76055 7.94757 8.63331 8.00028 8.50062 8.00028C8.36794 8.00028 8.2407 7.94757 8.14688 7.85375C8.05305 7.75993 8.00035 7.63268 8.00035 7.5C8.00035 7.36732 8.05305 7.24007 8.14688 7.14625L12.2925 3H9.5C9.36739 3 9.24021 2.94732 9.14645 2.85355C9.05268 2.75979 9 2.63261 9 2.5C9 2.36739 9.05268 2.24021 9.14645 2.14645C9.24021 2.05268 9.36739 2 9.5 2H13.5C13.6326 2 13.7598 2.05268 13.8536 2.14645C13.9473 2.24021 14 2.36739 14 2.5V6.5ZM11.5 8C11.3674 8 11.2402 8.05268 11.1464 8.14645C11.0527 8.24021 11 8.36739 11 8.5V13H3V5H7.5C7.63261 5 7.75979 4.94732 7.85355 4.85355C7.94732 4.75979 8 4.63261 8 4.5C8 4.36739 7.94732 4.24021 7.85355 4.14645C7.75979 4.05268 7.63261 4 7.5 4H3C2.73478 4 2.48043 4.10536 2.29289 4.29289C2.10536 4.48043 2 4.73478 2 5V13C2 13.2652 2.10536 13.5196 2.29289 13.7071C2.48043 13.8946 2.73478 14 3 14H11C11.2652 14 11.5196 13.8946 11.7071 13.7071C11.8946 13.5196 12 13.2652 12 13V8.5C12 8.36739 11.9473 8.24021 11.8536 8.14645C11.7598 8.05268 11.6326 8 11.5 8Z" fill="#95988B"/> </svg></a></td></tr></table></div>
<h3>Customer Sentiment Highlights</h3><ul><li>“Windsurf&#039;s NVIDIA H100 Tensor Core GPUs on Crusoe have been incredibly reliable with a cluster uptime of 99.98%. This reliability, combined with the significant cost savings, has enabled us to scale our infrastructure confidently while maintaining healthy unit economics.” <b><span class="pricingHiphenSymb"> - </span>CEO, Windsurf - Reliability and Cost Efficiency</b></li><li>“Working with Crusoe Cloud is a win-win for us. Their platform is reliable, scalable and price-performant, allowing us to rapidly train and tune our models, while being climate-aligned and sustainable.”<b><span class="pricingHiphenSymb"> - </span>CTO &amp; Co-Founder, Jua - Climate-aligned performance meets scalability needs</b></li><li>“Their managed services free up precious resources to enable us to focus on our core expertise: building models.” <b><span class="pricingHiphenSymb"> - </span>CTO - Operational focus enabled by managed services</b></li></ul>
Metronome’s Take
<p>Crusoe Cloud employs a hybrid infrastructure pricing model that blends familiar cloud consumption mechanics with a small number of structurally meaningful differentiators. While many elements of Crusoe&#039;s pricing mirror hyperscaler conventions, the company&#039;s execution, particularly around energy economics, egress policy, and workload-aligned consumption paths, creates a cost model that is more predictable and developer-friendly for GPU-intensive AI workloads. Unlike AI platforms that abstract infrastructure costs behind usage bundles, Crusoe largely exposes infrastructure economics directly, positioning pricing as a cost-optimization tool rather than a margin-smoothing mechanism.</p>
<p><strong>Recommendation:</strong> Organizations running distributed training workloads with variable capacity needs benefit most from Crusoe&#039;s pricing model, particularly those willing to trade interruptibility for cost efficiency via spot instances. Teams operating production inference systems gain flexibility by combining reserved GPU capacity with token-based managed services, while avoiding the hidden network and data transfer costs that often distort cloud AI economics.</p>
<h4>Key Insights</h4><ul><li> <strong>Three-Tier Consumption Model (tiered-flexibility architecture):</strong> The on-demand/spot/reserved structure provides natural expansion (or graduation) paths as workloads mature, with customers able to prototype on spot instances and graduate to on-demand for production or reserved capacity as reliability requirements increase. <p><strong>Benefit:</strong> Teams can align infrastructure spend with workload maturity, starting with low-cost experimentation and scaling into predictable production capacity without re-platforming or renegotiating contracts.</p></li><li> <strong>Energy-Driven GPU Economics Create Structural Cost Advantages:</strong> Crusoe&#039;s pricing competitiveness—particularly on high-demand GPUs—is underpinned by its differentiated energy strategy rather than temporary market pricing. This allows Crusoe to offer materially lower GPU-hour pricing while maintaining margin discipline. <p><strong>Benefit:</strong> Customers gain access to competitive GPU pricing that is more likely to persist over time, reducing the risk of sudden cost reversion once workloads move into production.</p></li><li> <strong>Multi-Metric Pricing Support:</strong> Crusoe prices across multiple dimensions—GPU-hours, vCPU-hours, storage (GiB-months), and token-based managed inference—rather than forcing all workloads into a single billing unit. While multi-metric pricing is common in infrastructure, Crusoe&#039;s alignment between metric and workload type is notable. <p><strong>Benefit:</strong> Teams can optimize training, fine-tuning, and inference independently—paying for GPU capacity where it&#039;s needed and shifting inference workloads to token-based services without overpaying for idle infrastructure.</p></li><li> <strong>Zero-Egress Architecture (cost-transparency feature):</strong> Eliminating network transfer charges removes a common friction point in cloud AI workflows where model artifacts and training data frequently move between storage and compute. <p><strong>Benefit:</strong> Makes total cost of ownership more predictable than hyperscalers charging $0.05-0.09/GB egress while reducing surprise bills and simplifying cost modeling for distributed training and data-intensive workloads.</p></li></ul>

The Pricing
Experimentation
Playbook

Find your ideal pricing model

Answer 8 quick questions to discover which best fits how your customers get value from your product.

Find your model